Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Radiat Oncol ; 19(1): 49, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627747

RESUMO

OBJECTIVE: This study evaluates various craniospinal irradiation (CSI) techniques used in Turkish centers to understand their advantages, disadvantages and overall effectiveness, with a focus on enhancing dose distribution. METHODS: Anonymized CT scans of adult and pediatric patients, alongside target volumes and organ-at-risk (OAR) structures, were shared with 25 local radiotherapy centers. They were tasked to develop optimal treatment plans delivering 36 Gy in 20 fractions with 95% PTV coverage, while minimizing OAR exposure. The same CT data was sent to a US proton therapy center for comparison. Various planning systems and treatment techniques (3D conformal RT, IMRT, VMAT, tomotherapy) were utilized. Elekta Proknow software was used to analyze parameters, assess dose distributions, mean doses, conformity index (CI), and homogeneity index (HI) for both target volumes and OARs. Comparisons were made against proton therapy. RESULTS: All techniques consistently achieved excellent PTV coverage (V95 > 98%) for both adult and pediatric patients. Tomotherapy closely approached ideal Dmean doses for all PTVs, while 3D-CRT had higher Dmean for PTV_brain. Tomotherapy excelled in CI and HI for PTVs. IMRT resulted in lower pediatric heart, kidney, parotid, and eye doses, while 3D-CRT achieved the lowest adult lung doses. Tomotherapy approached proton therapy doses for adult kidneys and thyroid, while IMRT excelled for adult heart, kidney, parotid, esophagus, and eyes. CONCLUSION: Modern radiotherapy techniques offer improved target coverage and OAR protection. However, 3D techniques are continued to be used for CSI. Notably, proton therapy stands out as the most efficient approach, closely followed by Tomotherapy in terms of achieving superior target coverage and OAR protection.


Assuntos
Radiação Cranioespinal , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Adulto , Humanos , Criança , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radiação Cranioespinal/métodos , Turquia , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos
2.
Radiat Oncol ; 17(1): 168, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271401

RESUMO

BACKGROUND: The ESTRO-ACROP Consensus Guideline (EACG) recommends implant excluded clinical target volume (CTVp) definitions for post-mastectomy radiation therapy after implant-based immediate breast reconstruction (IBR). The purpose of this study is to investigate the effectiveness of Helical Tomotherapy (HTp) and Volumetric Modulated Arc Therapy (VMATp) treatment techniques in terms of CTVp coverage and reduced organ at risk (OAR), normal tissue and implant doses when CTVp was used for treatment planning as the target structure instead of conventional CTV. METHODS: Eight left-sided and eight right-sided breast cancer patients who underwent IBR after mastectomy were included in this study. Planning CT data sets were acquired during free breathing and patients were treated with HT technique targeted to conventional CTV. Retrospectively, CTVp was delineated based on EACG by the same radiation oncologist, and treatment plans with HTp and VMATp techniques were generated based on CTVp. For each patient, relevant dosimetric parameters were obtained from three different treatment plans. RESULTS: There was no statistically significant difference on target coverage in terms of, PTVp-D95, PTVp-Vpres, homogeneity index (p > 0.05) between HTp and VMATp plans. But, the conformity numbers were significantly higher (HTp vs VMATp, 0.69 ± 0.15 vs 0.79 ± 0.12) for VMATp (Z = - 2.17, p = 0.030). While HTp significantly lowered Dmax and Dmean for LAD (LAD-Dmax: χ2 = 12.25, p = 0.002 and LAD-Dmean: χ2 = 12.30, p = 0.002), neither HTp nor VMATp could reduce maximum and mean dose to heart (p > 0.05). Furthermore, heart volume receiving 5 Gy was significantly higher for VMATp when compared to HTp (21.2 ± 9.8 vs 42.7 ± 24.8, p: 0.004). Both techniques succeeded in reducing the mean dose to implant (HTp vs HT, p < 0.001; VMATp vs HT, p < 0.001; VMATp vs HTp, p = 0.005). CONCLUSION: Both HTp and VMATp techniques succeeded to obtain conformal and homogeneous dose distributions within CTVp while reducing the mean implant dose. HTp was found to be superior to VMATp with regards to lowering all OAR doses except for CB.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Humanos , Feminino , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Mastectomia , Estudos Retrospectivos , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Órgãos em Risco
3.
Radiat Oncol J ; 40(1): 9-19, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35368196

RESUMO

OBJECTIVE: This study aimed to investigate the tumor volume changes occurring during limited-field radiotherapy (RT) for glioblastoma patients and whether a volume-adapted boost planning approach provided any benefit on tumor coverage and normal tissue sparing. MATERIALS AND METHODS: Twenty-four patients underwent simulation with magnetic resonance (MR) and computed tomography (CT) scans prior to RT (MR_initial, CT_initial) and boost treatment (MR_adapt, CT_adapt). For the boost phase, MR_initial and MR_adapt images were used to delineate GTV2 and GTV2_adapt, respectively. An initial boost plan (Plan_initial) created on CT_initial for PTV2 was then reoptimized on CT_adapt by keeping the same optimization and normalization values. Plan_adapt was generated on CT_adapt for PTV2_adapt volume. Dose volume histogram parameters for target volumes and organs-at-risk were compared using these boost plans generated on CT_adapt. Plan_initial and Plan_adaptive boost plans were summed with the first phase plan and the effect on the total dose was investigated. RESULTS: Target volume expansion was noted in 21% of patients while 79% had shrinkage. The average difference for the initial and adaptive gross tumor volume (GTV), clinical target volume (CTV), and planning target volume (PTV) volumes were statistically significant. Maximum dose differences for brainstem and optic chiasm were significant. Healthy brain tissue V10 and ipsilateral optic nerve maximum doses were found to decrease significantly in Plan_adaptive. CONCLUSION: Results of this study confirm occurrence of target volume changes during RT for glioblastoma patients. An adaptive plan can provide better normal tissue sparing for patients with lesion shrinkage and avoid undercoverage of treatment volumes in case of target volume expansion especially when limited-fields are used.

4.
Med Dosim ; 39(3): 266-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24933316

RESUMO

Radiation fluence changes caused by the dosimeter itself and poor spatial resolution may lead to lack of 3-dimensional (3D) information depending on the features of the dosimeter and quality assurance of dose distributions for high-dose rate (HDR) iridium-192 ((192)Ir) brachytherapy sources is challenging and experimental dosimetry methods used for brachytherapy sources are limited. In this study, we investigated 3D dose distributions of (192)Ir brachytherapy sources for irradiation with single and multiple dwell positions using a normoxic gel dosimeter and compared them with treatment planning system (TPS) calculations. For dose calibration purposes, 100-mL gel-containing vials were irradiated at predefined doses and then scanned in an magnetic resonance (MR) imaging unit. Gel phantoms prepared in 2 spherical glasses were irradiated with (192)Ir for the calculated dwell positions, and MR scans of the phantoms were obtained. The images were analyzed with MATLAB software. Dose distributions and profiles derived with 1-mm resolution were compared with TPS calculations. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. The x-, y-, and z-axes were defined as the sagittal, coronal, and axial planes, respectively, the sagittal and axial planes were defined parallel to the long axis of the source while the coronal plane was defined horizontally to the long axis of the source. The differences between measured and calculated profile widths of 3-cm source length and point source for 70%, 50%, and 30% isodose lines were evaluated at 3 dose levels using 18 profiles of comparison. The calculations for 3-cm source length revealed a difference of > 3mm in 1 coordinate at 50% profile width on the sagittal plane and 3 coordinates at 70% profile width and 2 coordinates at 50% and 30% profile widths on the axial plane. Calculations on the coronal plane for 3-cm source length showed > 3-mm difference in 1 coordinate at 50% and 70% and 2 coordinates at 30% profile widths. The point source measurements and calculations for 50% profile widths revealed a difference > 3mm in 1 coordinate on the sagittal plane and 2 coordinates on the axial plane. The doses of 3 coordinates on the sagittal plane and 4 coordinates on the axial plane could not be evaluated in 30% profile width because of low doses. There was good agreement between the gel dosimetry and TPS results. Gel dosimetry provides dose distributions in all 3 planes at the same time, which enables us to define the dose distributions in any plane with high resolution. It can be used to obtain 3D dose distributions for HDR (192)Ir brachytherapy sources and 3D dose verification of TPS.


Assuntos
Braquiterapia , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador , Ácido Ascórbico , Sulfato de Cobre , Gelatina , Humanos , Hidroquinonas , Metacrilatos , Polímeros , Radiometria
5.
Breast Cancer Res Treat ; 126(1): 85-92, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21184273

RESUMO

This prospective study investigated radiation dose and volume changes during breathing cycle. Ten patients with left breast carcinoma receiving radiotherapy were included. Treatment planning images were obtained as three different sets of series taken: without breath control (F), deep inspiration (I), and end of expiration (E), with 3-mm intervals. As such, whole breath cycle was simulated. CT images taken during I and E were registered to F, according to DICOM coordinates. Each patient's target and organ at risk volumes were contoured by the primary radiation oncologist except heart components which were contoured by radiologist on F, I and E series. Radiotherapy planning was done on F series, then planning and beam data were transferred from F to I and E image series. Target and organs at risk (OAR) dose distributions for E and I image series were obtained. Dose changes between F, E, and I phases for whole heart and components, namely, left ventricle (LV), right ventricle (RV), left auricle (LA), right auricle (RA), and left anterior descendent artery (LAD) were examined. Furthermore, the issue of any compartment representing the maximum heart dose was investigated. Volume and dose variations for heart, LV, RV, LA, RA, and LAD were observed during breath cycle. Exposured dose was more than defined tolerance level for LV, RV, and LAD in some patients. However, dose differences between F-I and F-E were not statistically significant. Radiotherapy planning without breath control is not capable of compensating for whole intra-fraction heart and its components' volumes and dose changes.


Assuntos
Neoplasias da Mama/radioterapia , Coração/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador , Respiração , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Fracionamento da Dose de Radiação , Feminino , Humanos , Órgãos em Risco , Prognóstico , Estudos Prospectivos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA